robosuite.robots package#
Submodules#
robosuite.robots.fixed_base_robot module#
- class robosuite.robots.fixed_base_robot.FixedBaseRobot(robot_type: str, idn=0, composite_controller_config=None, initial_qpos=None, initialization_noise=None, base_type='default', gripper_type='default', control_freq=20, lite_physics=True)#
Bases:
Robot
Initializes a robot with a fixed base.
- property action_limits#
Action lower/upper limits per dimension.
- Returns:
(np.array) minimum (low) action values
(np.array) maximum (high) action values
- Return type:
2-tuple
- control(action, policy_step=False)#
Actuate the robot with the passed joint velocities and gripper control.
- Parameters:
action (np.array) –
The control to apply to the robot. The first @self.robot_model.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper.
- NOTE:
Assumes inputted actions are of form: [right_arm_control, right_gripper_control, left_arm_control, left_gripper_control]
policy_step (bool) – Whether a new policy step (action) is being taken
- Raises:
AssertionError – [Invalid action dimension]
- property is_mobile#
- load_model()#
Loads robot and optionally add grippers.
- reset(deterministic=False)#
Sets initial pose of arm and grippers. Overrides gripper joint configuration if we’re using a deterministic reset (e.g.: hard reset from xml file)
- Parameters:
deterministic (bool) – If true, will not randomize initializations within the sim
- setup_observables()#
Sets up observables to be used for this robot
- Returns:
Dictionary mapping observable names to its corresponding Observable object
- Return type:
OrderedDict
- setup_references()#
Sets up necessary reference for robots, grippers, and objects.
Note that this should get called during every reset from the environment
robosuite.robots.legged_robot module#
- class robosuite.robots.legged_robot.LeggedRobot(robot_type: str, idn=0, composite_controller_config=None, initial_qpos=None, initialization_noise=None, base_type='default', gripper_type='default', control_freq=20, lite_physics=True)#
Bases:
MobileRobot
Initializes a robot with a wheeled base.
- property action_limits#
Action lower/upper limits per dimension.
- Returns:
(np.array) minimum (low) action values
(np.array) maximum (high) action values
- Return type:
2-tuple
- control(action, policy_step=False)#
Actuate the robot with the passed joint velocities and gripper control.
- Parameters:
action (np.array) –
The control to apply to the robot. The first @self.robot_model.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper.
- NOTE:
Assumes inputted actions are of form: [right_arm_control, right_gripper_control, left_arm_control, left_gripper_control]
policy_step (bool) – Whether a new policy step (action) is being taken
- Raises:
AssertionError – [Invalid action dimension]
- property is_legs_actuated#
- load_model()#
Loads robot and optionally add grippers.
- property num_leg_joints#
- reset(deterministic=False)#
Sets initial pose of arm and grippers. Overrides gripper joint configuration if we’re using a deterministic reset (e.g.: hard reset from xml file)
- Parameters:
deterministic (bool) – If true, will not randomize initializations within the sim
- setup_observables()#
Sets up observables to be used for this robot
- Returns:
Dictionary mapping observable names to its corresponding Observable object
- Return type:
OrderedDict
- setup_references()#
Sets up necessary reference for robots, grippers, and objects.
Note that this should get called during every reset from the environment
robosuite.robots.mobile_robot module#
- class robosuite.robots.mobile_robot.MobileRobot(robot_type: str, idn=0, composite_controller_config=None, initial_qpos=None, initialization_noise=None, base_type='default', gripper_type='default', control_freq=20, lite_physics=True)#
Bases:
Robot
Initializes a robot with a fixed base.
- property base#
- control(action, policy_step=False)#
Actuate the robot with the passed joint velocities and gripper control.
- Parameters:
action (np.array) –
The control to apply to the robot. The first @self.robot_model.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper.
- NOTE:
Assumes inputted actions are of form: [right_arm_control, right_gripper_control, left_arm_control, left_gripper_control]
policy_step (bool) – Whether a new policy step (action) is being taken
- Raises:
AssertionError – [Invalid action dimension]
- enable_parts(right=True, left=True, torso=True, head=True, base=True, legs=True)#
- property head#
- property is_mobile#
- property legs#
- load_model()#
Loads robot and optionally add grippers.
- reset(deterministic=False)#
Sets initial pose of arm and grippers. Overrides gripper joint configuration if we’re using a deterministic reset (e.g.: hard reset from xml file)
- Parameters:
deterministic (bool) – If true, will not randomize initializations within the sim
- setup_observables()#
Sets up observables to be used for this robot
- Returns:
Dictionary mapping observable names to its corresponding Observable object
- Return type:
OrderedDict
- setup_references()#
Sets up necessary reference for robots, grippers, and objects.
Note that this should get called during every reset from the environment
- property torso#
robosuite.robots.robot module#
- class robosuite.robots.robot.Robot(robot_type: str, idn=0, composite_controller_config=None, initial_qpos=None, initialization_noise=None, base_type='default', gripper_type='default', control_freq=20, lite_physics=True)#
Bases:
object
Initializes a robot simulation object, as defined by a single corresponding robot XML
- Parameters:
robot_type (str) – Specification for specific robot arm to be instantiated within this env (e.g: “Panda”)
idn (int or str) – Unique ID of this robot. Should be different from others
initial_qpos (sequence of float) – If set, determines the initial joint positions of the robot to be instantiated for the task
initialization_noise (dict) –
Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below:
- ’magnitude’:
The scale factor of uni-variate random noise applied to each of a robot’s given initial joint positions. Setting this value to “None” or 0.0 results in no noise being applied. If “gaussian” type of noise is applied then this magnitude scales the standard deviation applied, If “uniform” type of noise is applied then this magnitude sets the bounds of the sampling range
- ’type’:
Type of noise to apply. Can either specify “gaussian” or “uniform”
- Note:
Specifying None will automatically create the required dict with “magnitude” set to 0.0
base_type (str) – type of base, used to instantiate base models from base factory. Default is “default”, which is the default base associated with this robot’s corresponding model. None results in no base, and any other (valid) model overrides the default base.
control_freq (float) – how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input.
- property action_dim#
Action space dimension for this robot
- property action_limits#
- property arm_joint_indexes#
Returns: list: mujoco internal indexes for the robot arm joints
- check_q_limits()#
Check if this robot is either very close or at the joint limits
- Returns:
True if this arm is near its joint limits
- Return type:
bool
- control(action, policy_step=False)#
Actuate the robot with the passed joint velocities and gripper control.
- Parameters:
action (np.array) – The control to apply to the robot. The first @self.robot_model.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper.
policy_step (bool) – Whether a new policy step (action) is being taken
- create_action_vector(action_dict)#
A helper function that creates the action vector given a dictionary
- property dof#
Returns: int: the active DoF of the robot (Number of robot joints + active gripper DoF).
- property ee_force#
Returns: dict: each arm-specific entry specifies the force applied at the force sensor at the robot arm’s eef
- property ee_ft_integral#
Returns: dict: each arm-specific entry specifies the integral over time of the applied ee force-torque for that arm
- property ee_torque#
Returns: dict: each arm-specific entry specifies the torque applied at the torque sensor at the robot arm’s eef
- enable_parts(right=True, left=True)#
- enabled(part_name)#
- get_gripper_name(arm)#
- get_sensor_measurement(sensor_name)#
Grabs relevant sensor data from the sim object
- Parameters:
sensor_name (str) – name of the sensor
- Returns:
sensor values
- Return type:
np.array
- has_part(part_name)#
- property is_mobile#
- property joint_indexes#
Returns: list: mujoco internal indexes for the robot joints
- property js_energy#
Returns: np.array: the energy consumed by each joint between previous and current steps
- load_model()#
Loads robot and optionally add grippers.
- property part_controllers#
Controller dictionary for the robot
- Returns:
Controller dictionary for the robot
- Return type:
dict
- pose_in_base_from_name(name)#
A helper function that takes in a named data field and returns the pose of that object in the base frame.
- Parameters:
name (str) – Name of body in sim to grab pose
- Returns:
(4,4) array corresponding to the pose of @name in the base frame
- Return type:
np.array
- print_action_info()#
- print_action_info_dict()#
- reset(deterministic=False)#
Sets initial pose of arm and grippers. Overrides robot joint configuration if we’re using a deterministic reset (e.g.: hard reset from xml file)
- Parameters:
deterministic (bool) – If true, will not randomize initializations within the sim
- Raises:
ValueError – [Invalid noise type]
- reset_sim(sim: MjSim)#
Replaces current sim with a new sim
- Parameters:
sim (MjSim) – New simulation being instantiated to replace the old one
- set_gripper_joint_positions(jpos: ndarray, gripper_arm: str | None = None)#
Helper method to force gripper joint positions to the passed values.
- Parameters:
jpos (np.array) – Joint jpos to manually set the gripper to
gripper_arm – arm corresponding to the gripper for which to set the gripper joint jpos. If None, use default arm.
- set_robot_joint_positions(jpos)#
Helper method to force robot joint positions to the passed values.
- Parameters:
jpos (np.array) – Joint positions to manually set the robot to
- setup_observables()#
Sets up observables to be used for this robot
- Returns:
Dictionary mapping observable names to its corresponding Observable object
- Return type:
OrderedDict
- setup_references()#
Sets up necessary reference for robots, bases, grippers, and objects.
- property torque_limits#
Torque lower/upper limits per dimension.
- Returns:
(np.array) minimum (low) torque values
(np.array) maximum (high) torque values
- Return type:
2-tuple
- visualize(vis_settings)#
Do any necessary visualization for this manipulator
- Parameters:
vis_settings (dict) – Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have “robots” and “grippers” keyword as well as any other robot-specific options specified.
robosuite.robots.wheeled_robot module#
- class robosuite.robots.wheeled_robot.WheeledRobot(robot_type: str, idn=0, composite_controller_config=None, initial_qpos=None, initialization_noise=None, base_type='default', gripper_type='default', control_freq=20, lite_physics=True)#
Bases:
MobileRobot
Initializes a robot with a wheeled base.
- property action_limits#
Action lower/upper limits per dimension.
- Returns:
(np.array) minimum (low) action values
(np.array) maximum (high) action values
- Return type:
2-tuple
- control(action, policy_step=False)#
Actuate the robot with the passed joint velocities and gripper control.
- Parameters:
action (np.array) –
The control to apply to the robot. The first @self.robot_model.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper.
- NOTE:
Assumes inputted actions are of form: [right_arm_control, right_gripper_control, left_arm_control, left_gripper_control]
policy_step (bool) – Whether a new policy step (action) is being taken
- Raises:
AssertionError – [Invalid action dimension]
- load_model()#
Loads robot and optionally add grippers.
- reset(deterministic=False)#
Sets initial pose of arm and grippers. Overrides gripper joint configuration if we’re using a deterministic reset (e.g.: hard reset from xml file)
- Parameters:
deterministic (bool) – If true, will not randomize initializations within the sim
- setup_observables()#
Sets up observables to be used for this robot
- Returns:
Dictionary mapping observable names to its corresponding Observable object
- Return type:
OrderedDict
- setup_references()#
Sets up necessary reference for robots, grippers, and objects.
Note that this should get called during every reset from the environment
Module contents#
- robosuite.robots.register_robot_class(target_type, **kwargs)#